
Authentication: Integrity Checking

Michael Brockway

March 5, 2018

Overview

We have met two ways in which we need to be assured or the
authenticity of a message sent through a network:

I The message really is from the party who purportedly sent it;

I The message data is as sent; it has not been tampered with en route.

These are two different security assurances and we seen one is provided
for by a digital signature mechanism (backed up by digital certificates)
while the other is provided a message digest created by a hash function.

The acronym MAC, ’Message authentication code’ is confusingly used to
refer to either of these. These slides focus of the second and takes a
closer look at message digests and hash functions.

Hash Functions

A B

a h(a)h

In general, a function h maps a set A of objects to a set B of (other)
objects, the idea being that for any a ∈ A there is a (unique) h(a) ∈ B.

We write A
h→ B.

An example: any java Object ob has a method:
public int ob.hashCode().
We can think of h mapping ob to ob.hashCode(). In this case B is the
set of int values - there are 232 of them.

Hash Functions

Java hash functions are supposed to be contrived so that whenever
(ob1.equals(ob2)) then (ob1.hashCode() == ob1.hashCode()).
To be useful, we would also like
(!ob1.equals(ob2)) ⇒ (ob1.hashCode() != ob1.hashCode()).

This is not guaranteed but a hash collision, where (!ob1.equals(ob2))

but (ob1.hashCode() == ob1.hashCode()) has very low probability
when the hash function is well designed.

Java programmers overriding Object.hashCode() are supposed to pay
attention to this.

Hash Functions

You have met java HashSets and HashMaps which store objects in hash
tables.

I A suitably contrived hash function on objects returns a number
which indexes into an array.

I The object reference is stored here;

I A collision is resolved by putting the objects in a linked list at the
location.

I If the probability of the collision is low than these lists are short.

Cryptographic hash functions

Message space Hash value space

m h(m)h

For every message m, hash value h(m) is efficiently computable: it is a
sequence bits which can be thought of as an integer: h(m) < 2s where is
s is the size of the hash in bits.

I Not only are hash collisions improbable (2s is ‘large’), but a 1-bit
change in the message almost always produces a large change in
h(m);

I h is pre-image resistent: it is infeasible (for an attakcer) to contrive
a message m for which h(m) = a desired value - such as the hash of
another message;

I It is strongly collision resistant: it is infeasible to contrive a pair of
messages m,m′ such that h(m) == h(m′).

Cryptographic hash functions - use

I The sender of a message computes the hash of the message and
appends it before encrypting.

I The recever, after decrypting, computes a hash,

I and compares it with the one that was sent.

I Any mismtch => tampering!

Cryptographic hash functions
The birthday attack is an exploit protected against by strongly
collision-resistant hashing. The attacker has two versions of, say, a contract,
one less favourable than the other, with the same hash value, and can switch
them without detection if the hash were not strongly collision-resistant.

You have probably heard that in a random sample of n people, the probability
two have birthdays on the same day grows with n and passes 0.5-0.5 when
n > 23...

Cryptographic hash function examples - MD5

MD5 (R Rivest, 1991-2)

I 128-bit hashes: 2128 ≈ 1038, 100 million million million million
million million values;

I by 2004, not enough! Wang, Feng, Lai and Yu contrived a collision
in 1 CPU-hour on an IBM p690

I Updates were issued until 2010

I Now considered insecure, also found to be still used as recently as
2015.

I The Wikipedia article has a neat summary of the algorithm, its
security issues and vularabilities.

SHA-1: Secure hash algorithm 1

I 160-bit hashes: 2160 ≈ 1.4× 1048, a million million million million
million million million million values;

I From 2005, collision attacks began to be contrived: Rijmen and
Oswald in 280 operations, Wang, Yin and Yu in 269 operations.

I These early attacks were actually prohibitively expensive; but in
October 2015 M Stevens and others demonstrated a partial attack
using a grid of NVIDIA GPUs costing around US$2000 -

I ... and in Feb 2017 the SHAttered attack (CWI and Google) ...

https://www.theregister.co.uk/2017/02/23/google first sha1 collision/

I generated two different PDF files with the same SHA-1 hash in
roughly 263.1 SHA-1 evaluations.

I 100,000 times faster than brute force birthday attack

I required equivalent of 6,500 years of single-CPU computations or
110 years of single-GPU computations

The Wikipedia article has a neat summary of the algorithm, its security
issues and vularabilities.

SHA-2 family

I SHA-224, 256, 384, 512, 512/224, 512/256 (USA NSA)

I SHA-256, for instance outputs a 256-bit number: 2256 ≈ 1077

values; currently recommended for TLS although already attacks are
being show to be possible.

I A SHA-256 hash is handled as an array of 8 32-bit words (unsigned
integers).

I SHA-512 which works with 64-bit words is coming to be
recommended for 64 bit machines.

SHA-256 is considered in more detail below and is in a sense typical of
this family of hash functions. SHA512 follows similar logic but a ‘state’
consists of 8 x 64- rather than 32-bit words.

SHA-256

The 256-bit hash is handled as an array of 8 x 32-bit integers. These are
called words in the literature:

I in C they would have type unsigned int or uint32 t

I in Java, just int

The data is organized as 512-bit (64 byte, 16 word) blocks. A high-level
view of the process is:

I The hash is initialized;

I There is a round for each block:

I an update to the hash is computed (as 8 words) and
I added, word-wise, to the hash

I Done, once all blocks have been processed. The hash is returned.

SHA-256 helpers

The SHA-256 algorithm employs some constants -

I word[8] hashInit, array of 8 x 32-bit constants to initialise the
hash;

I word[64] roundConst, array of 64x32-bit constants used in each
round.

Some bitwise logic functions -

I word rotr(word wd, int k) {
return (wd >> k) | (wd << (32-k)); } - rotate wd k bits to

right

I word ch(word x, word y, word x) {
return (x & y) ^ (∼x & z); } - think ‘choice’

I word maj(word x, word y, word x) {
return (x & y) ^ (x & z) ^ (y & z); } - think ‘majority’

SHA-256 helpers

Some ‘magic’ functions used in block (round) processing -

I word Σ0(word x) {
return rotr(x,2) ^ rotr(x,13) ^ rotr(x,22); }

I word Σ1(word x) {
return rotr(x,6) ^ rotr(x,11) ^ rotr(x,25); }

I word σ0(word x) {
return rotr(x,7) ^ rotr(x,18) ^ (x >> 3); }

I word σ1(word x) {
return rotr(x,17) ^ rotr(x,19) ^ (x >> 10); }

SHA-256 block setup and hash initialisation

The input data has to be a whole number of 16-word blocks. This
contrived by add padding in the following form -

I a 1 bit

I some 0 bits

I a 64-bit unsigned integer: the number of bits of data input.

The number of 0-bits in the padding is just what is needed to get the
overall bit size a multiple of 512 (ie, 16 words).

The data does not have to be all input at this stage - it can be input on
the fly during block processing rounds but the data length needs to be
known in advance to set up the padding.

The hash (array of 8 words) it initialised to a copy of hashInit.

SHA-256 block processing rounds

The data is a whole number of 16-word blocks. For each block,

I a 64-word array w is created from the data:

I w[0..15] is copied from the 16 words of the block;
I for i = 16 to 63 set w[i] =

σ1(w[i-2]) + w[i-7] + σ0(w[i-15]) + w[i-16]

I the hash value from the previous round (in the first round, the initial
value) is copied to 8 words excitingly denoted a, b, c , d , e, f , g , h;

I For i = 0 to 63,
these variables are updated using w[i] and roundConst[i] as

indicated (wi , ki) in the diagram below;

I the 64-times updated a, ..., h are added modulo 232 to the hash
words:
hash[0] += a; hash[1] += b; ...; hash[7] += h;

NB ‘+’, addition of words, is modulo 232. Note also we have here a 64x
iteration within each block - there are potentially many iterations.

SHA-256 block processing: i th update of a...h

a b c d e f g h

+

a b c d e f g h

wi ki

+

ch

Σ1

+

t1

maj

Σ0

t1 + t2

Further reading

I https://en.wikipedia.org/wiki/MD5

I https://en.wikipedia.org/wiki/SHA-1

I

https://www.theregister.co.uk/2017/02/23/google first sha1 collision/

I https://en.wikipedia.org/wiki/SHA-2

I http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf

I Here is a zip containing java implementations of SHA-1 (mainly of
historical interest now!) and SHA-256:
http://computing.northumbria.ac.uk/staff/cgmb3/teaching/

cryptography/SecureHashAlgs.zip

Sha256.java lines 255-282 cover processing a block; 266-277
correspond to the diagram.

