
Securing the Transport Layer

Michael Brockway

March 5, 2018



Introduction

applications

transport (TCP, UDP, ...)

IP (h2h comms)

hardware

applications

transport

IP (h2h comms)

hardwareL0

L1

L2

L3

Applications that have to communicate data use transport layer services
which use IP services, which use network hardware connected by data
communications hardware.

The line connecting the two stacks is a communications channel using
wire, wireless (two-way radio), fiber-optics or some combination.



Introduction - the problem

I In the basic setup, a third party could connect to the physical data
communications channel and ‘eavesdrop’.

I Alternatively, the third party can interpose themselves between the
original parties (tampering with the physical coonections or wireless
channels), intercept data packets and tamper with them...

I or destroy them...

I or inject data packets purporting to come from one of the original
parties.

I Third parties can flood the channel with junk messages making it
impossible for the original partis to function - (distributed) denial of
service attack.

The applications need some defence against these.

DoS attacks are protected against by firewalls – processes that control
ingress or egress of data packets from one network to another: these are
often built-in to routers.

The other problems can be dealt with in a more general fashion ...



Transport layer security requirements

Fundamentally, applications communicate with one another,

I an application needs to know that a data packet cannot be read by
unauthorised third parties - privacy or confidentiality.

I It needs to know it genuinely came from the network address given
in the packet and was not injected by an imposter - authenticity.

I It needs to know the data contents are as sent and have not been
tampered with - integrity.

The assurances are met by software sitting between the transport and
application layers.



Transport layer security - basic setup

applications

transport (TCP, UDP, ...)

IP (h2h comms)

hardware

applications

transport

IP (h2h comms)

hardwareL0

L1

L2

L3

TLS

Transport-layer Security (TLS) is a ‘thin’ software layer sitting between
the transport and application layers in the original TCP/IP stack.



Transport layer security - basic setup

TLS is designed to provide the required assurances:

I A data packet cannot be read by unauthorised third parties:
confidentiality is assured use of a suitable encryption scheme. Data
is encrypted before it is sent and decrypted when it received; only
the legitimately communicating parties are able do this.

I A data packet comes with a digital signature which can be
authenticated at the receiving end. Suitable digital signature
schemes make it hard for a third party to fake a digital signature and
thus assure authenticity.

I The integrity of a message is assured by using a cryptographic hash
function. This function generates a message digest or message
authentication code (MAC) which can be generated at the sending
end and attached to the message; it is generated at the receiving
end also, and the two values compared. Good hash functions make
it difficult for a third party to alter the message while keeping the
hash value the same.



Message and hash functions

A hash function takes as input a (possibly very long) sequence of bytes
and returns a hash value, a number in a fixed range.

I For instance SHA256 returns a 256-bit number: in effect a number
in the range 0 ... 2256 − 1.

This is similar to the hash functions which support hash-tables of objects.
What is special about a cryptographic hash function is that

I A small change in the input message (the byte sequence) always
produces a big jump in the hash value;

I It is computationally infeasible to reverse-engineer hash values: to
contrive a message whose hash is a given value;

I It is computationally infeasible to contrive two messages which give
equal hash values.

A collision-resistant hash function is one with the first two of these
properties. If it has all three properties it is strongly collision-resistant.



Message and hash functions
Thus, an attempt to tamper with message data will alter the hash. If a
particular hash value is expected by the receiver, tampering will be
detected.

I Contriving two messages that hash to the same value is a birthday
attack: so called because the probability that in a group of n people,
two will have a birthday on the same day is over 0.5 when n > 23.
(See the wikipedia article on birthday attacks!)

I A strongly collision resistent hash function can thus be used to foil
birthday attacks.

Usual TLS practice is

I The sender computes the hash of the message and appends the hash
value to the message;

I the message+hash is encrypted and sent;

I the receiver decrypts the data and splits off the hash value;

I the receiver computes the hash of the received message and
compares it with the received hash value.

I Tampering will inevitably have cause a mismatch.



Encryption
Encryption algorithms are in the public domain; their security lies in
being key-driven

I The typical scheme is c = E (k ,m); m = D(k ′, c);
I m is the plain-text message (byte sequence), c is the cipher-text.
I E is the encryption function which takes a key as well as the

message.
I D is the companion decryption function which takes a key as well as

the ciphertext.
I E ,D are inverses: provided k ′ is the decryption key corresponding to

encryption key k, then
I ∀m : D(k ′,E (k ,m)) = m and ∀c : E (k ,D(k ′, c)) = c
I E ,D are publicly known; but no-one can infer m from c without

knowing k ′.

Thus in TLS,

I the sender will send E (k ,m + h(m)) = c [m = message, h(m) =
hash]

I the receiver will receive c and decrypt: D(k ′, c) = m′ + h′

I the receiver will check that h(m′) = h′ to verify integrity.



Encryption

A symmetric encryption system is one with k ′ = k : the same key is used
in encryption and decryption: it is shared between sender and receiver.
Seems like a simplification but ...

I If a server, say, at PayPal, has to share pairs of keys with millions of
customers, this is a massive management problem;

I How can it agree a shared key with each customer without an
eaveropper discovering it?

I There has to be a different key with each customer (why?)

An asymmetric encryption system has k ′ 6= k :

I Now PayPal can publish its encryption key kPP . PayPal’s decription
key k ′

PP cannot be inferred; so anyone can send a message privately
to PayPal and only PayPal can read it.

I PayPal’s kPP is its public key; k ′
PP is its private key. Assymetric

cryptosystems are more usually called public key cryptosystems.



Encryption

I PayPal customer Fred also has a public key kF and a private key k ′
F .

I A message PP → F is encrypted by PP with kF (OK because kF is
public!) and recovered by F with k ′

F ;

I A message F → PP is encrypted by F with kPP and recovered by PP
with k ′

PP .

We seem to have covered message integrity and confidentiality. What
about authentication? Our public-key cryptographic system can be used
for this too.

I PayPal can append its messages with its digital signature
sig = D(k ′

PP , “PayPal”).

I The hash(msg+sig) is computed and appended;

I The whole is encrypted: E (kF , (msg + sig + hash) = c and sent to
Fred

I Fred decrypts: D(k ′
F , c) and recovers msg+sig+hash

I Fred extracts the hash and compares it to locally computed
hash(msg + sig) to check integrity.



Encryption

I To Fred, the message looks like plain text but the signature looks
funny because if it is authentic, it is D(k ′

PP , “PayPal”).

I Fred can check this by applying PP’s public key:
E (kPP ,D(k ′

PP , “PayPal”)) - should get “PayPal” in plain text.

I This works because not only ∀m : D(k ′,E (k ,m)) = m (encryption
followed by decryption) but also ∀c : E (k ,D(k ′, c)) = c .

The public-key system is used with the roles of E (k ,−) and D(k ′,−)
reversed to do authentication.

Of course, all this work is done by PayPal’s server and Fred’s web
browser and/or email client: not by an actual Fred.



Digital Certificates

How does Fred know the message from PayPal is really from PayPal and
not from a ‘man in the middle’ masquerading as PayPal?

I PayPal’s public key kPP is registered with a trusted certificate
authority.

I Fred’s browser will verify kPP with this authority before using it to
check the authenticity of the message.



Re-enter symmetric cryptosystems

There is a problem with the scheme outlined so far. All current public
key systems are very strong, but also slow: to slow for bulk encryption of
megabytes of data in reasonable time.

Symmetric systems such as AES are 1000 or more times as fast.
Unfortuately, the shared keys are impossible to manage on a large scale.

TLS therefore uses a hybrid system: a session between (say) PayPal and
Fred

I start with an initial ‘handshake’ using a public key cryptosystem as
above.

I Then a shared key is agreed for use in an agreed symmetric
cryptosystem for the duration of the session.

I This negotion is kept private by use of the public-key system. There
are also other ‘key agreement protocols’ such as Diffie-Hellman key
agreement.

I From time to time during a long session, a new session key will be
negotiated.



TLS practicalities
Examples of hash functions and cryptosystems actually used in
transport-layer security will be outlined in the next two lectures. The last
few slides here give a brief outline of the structure of TLS.

TLS originally developed from from SLL.

I the ‘secure socket layer’ originally developed in the 90s by Taher ElGamal,
then chief scientist at Netscape.

I SSL went though a series of upgrades, through 2.0 to 3.0 as security
loopholes were closed.

I SSL 3.0 was still vulnarable to a number of attacks - Heartbleed and
POODLE, for instance: see RFCs 6176 and 7568.

I SSL used the RSA (Rivest-Shamir-Adleman) block cipher as its public-key
system, but with static keys which undermine forward security. (The
cipher itself is still considered secure.)

I SSL supported use the RC4 stream cipher which was eventually found to
be vulnarable.

I The Data Encription Standard (DES, including 3DES) was still supported
as the symmetric data encription system but by the early 2000s was easy
to break.

I SSL used the MD5 and SHA1 hash algorithms which are considered too
weak nowadays.



TLS practicalities

TLS 1.0 superceded SSL in 1999. See RFC 2246. The first big
improvement was to prevent SSL logic from downgrading security for the
sake of interoperability (POODLE exploited this).

TLS 1.1 is defined in RFC 4346 and included improved measures against
cipher block chaining and padding attacks.

TLS 1.2 is defined in RFC 5246 (2008) and is current as of early 2018

I Hash algorithms MD5, SHA1 replaced by SHA256

I Advanced Encryption Standard (Rijndael) is the symmetric data
encryption cipher of choice. Use in counter mode had vulnarabilities
but galois/counter and CCM mitigate this.

I authenticated encryption combines AES encryption with integrity
checking; some attacks exploited the separation of these operations.



TLS practicalities

As of early 2018, TLS 1.3 is in draft form. Proposals include

I ceasing to support MD5 and SHA-226 hash functions

I ceasing to support static RSA, static Diffie-Hellman key agreement

I disallowing RC4 or SSL negotiation for backwards compatibiltiy

I support for some new algorithms:

I ChaCha20 stream cipher
I Poly1305 MAC (hash function)
I Ed25519 and Ed448 digital signature algorithms (they work in a

similar fashion to PK digital signature checking)
I x25519 and x448 key agreement protocols



SSH (RFC 4251)

‘Secure SHell’ - a protocol for secure log-in to a remote machine.

I Uses PK cryptography to authenticate the remote computer and
allow it to authenticate the user.

I Supports tunneling, forwarding TCP ports

I Can transfer files using SSH file transfer (SFTP) or secure copy
(SCP) protocols.

Cient-server model.

I On Unix-type systems ‘ssh’ (at the command prompt) starts a SSH
client: command is

$ ssh user@hostURL

I On Windows systems ‘PuTTY’



SSH - uses

I login to a shell on a remote host: replaces Telnet, rlogin

I Canset up passwordless login to a remote server, eg using OpenSSH

I Secure file transfer

I forwarding or tunneling a port

I use as a full-fledged encrypted VPN (OpenSSH only)

I securely mounting a directory on a remote server as a filesystem on
a local computer

I automated remote monitoring and management of servers using
these mechanisms.



HTTP over TLS (RFC 2818)

HTTP, the communications protocol used by web browsers and servers,
adapted for secure communication:

I The protocol messages are secured (encrypted, authenticated,
integrity-checked) by TLS.

I You know your browser is using this when you seen ‘HTTPS’

I Authenticates the accessed website and assures privacy and integrity
of exchanged data.

I Protects against ‘man-in-the-middle’ attacks.

I Gives reasonable assurance that one is communicating, without
interference by attackers, with the intended website, not an
impostor.

I Widely used by banks, payment pages of e-commerce sites; there
arre obvious applications everywhere a web-based service handles
sensative data.



Further reading

RFCs

I RFC 6176 https://tools.ietf.org/html/rfc6176

I RFC 7568 https://tools.ietf.org/html/rfc7568 (SSL
vulnarabilities)

I RFC 2246 https://tools.ietf.org/html/rfc2246 (TLS 1.0)

I RFC 4346 https://tools.ietf.org/html/rfc2246 (TLS 1.1)

I RFC 5246 https://tools.ietf.org/html/rfc5246 (TLS 1.2)

I RFC 4251 https://tools.ietf.org/html/rfc5246 (SSH)

I RFC 2818 https://tools.ietf.org/html/rfc5246 (https)


