
Threads, Events
Control systems and Computer Networks

Dr Alun Moon

Lecture 6.2

Dr Alun Moon Threads, Events Lecture 6.2 1 / 5

Threads

MBED Threads look a lot like the POSIX threads you’ve seen.

Thread worker;
worker.start(flash_red);

void flash_red(void) { while(1){ } }

I each thread has it’s own loop
I while{1} means the loop and thread keep going forever.
I functions like join exist

Dr Alun Moon Threads, Events Lecture 6.2 2 / 5

Events and Dispatch

I MBED Events are handled by EventQueue.
I Events can be generated by libraries for devices, or programmatically.
I Events are dispatched to their handlers
I The EventQueue can dispatch its events for a given length of time, or

continuously
I The dispatch functions return when finished

• For continuous operation the EventQueue needs to be in its own
thread.

Thread worker;
EventQueue queue ;

worker.start(callback(&queue,
&EventQueue::dispatch_forever));

Dr Alun Moon Threads, Events Lecture 6.2 3 / 5

Periodic events

Remember the problem of working out the timing of loops using wait:
I If I want a loop at a particular period
I I have to use a wait time that takes into account the execution time

of the code (which might vary considerably)
We can register events to be triggered at a periodic rate

void blink(void){
green = !green;

}

queue.call_every(300, blink);

Note: the event function does not need a while(1) loop,
it is called once at each period.

Dr Alun Moon Threads, Events Lecture 6.2 4 / 5

Events and Interrupts
Recall Interrupt Service Routines (ISR) cannot perform complex or lengthy
operations, such as serial or networks communications.
I An ISR can trigger an event
I The event is handled in the context of the event-loop outside of the

ISR.

void blink(void){
pc.printf("This is not in an ISR so I can do long (time) operations\n");

}

Thread worker;
EventQueue queue ;

InterruptIn sw(SW2);
sw.fall(queue.event(blink));

Dr Alun Moon Threads, Events Lecture 6.2 5 / 5

