
The TCP Protocol Stack

Michael Brockway

February 16, 2018

Introduction - Layered archtecture

Networking software is desgined in a layered fashion

I The bottom layer is the services offered by the underlying hardware
and their device drivers: ’Ethernet’, ’Wifi’, ’BlueTooth’, ’Zigbee’ all
employ electronics to get digital signals from one computing host to
another.

I The next layer is software that employs the lower layer functionality
to provide a higher (more abstract) level of service.

I There will be a sequence of layers each employing the services of the
layer below.

Example

application programs

process-to-process channels

host-to-host connectivity

hardware

application programs

process 1 process 2

host-to-host connectivity

hardwareL0

L1

L2

L3

I The host-to-host connectivity software employs the hardware and its
device-drivers to send data to another host.

I The software driving a process uses this to exchange data with a
peer process on another host.

I Application software uses process-to-process service software to
exchange data with another app on another host.

Layered architecture

Each layer implements one (or more) protocol.

Each protocol defines

I a service interface: in later Li , defines operations provided by this
protocol for layer Li+1

I a peer-to-peer interface: defines the messages exchanged with a peer
in layer Li .

I At the hardware level L0 peer-to-peer communication is directly over
a link;

I at a higher level Li , Li to Li communication is conceptual; in reality
it happens by Li making use of services of Li−1 which uses services
of Li−2 and so on down to L0.

Example

A application program sending data to a peer using request-reply
protocol over host-to-host protocol.

application program

RRP

HHP

hardware

application program

RRP

HHP

hardwareL0

L1

L2

L3

data

RRP;data

HHP;RRP;data

HHP;RRP;data

data

RRP;data

HHP;RRP;data

Example

The application on host 1 sends a message to an application on host2. In
practice this the application calls a function in service interface of the
Request Reply Protocol software module.

The dotted lines show virtual communication between peer entities.

I RRP attaches some control information in an RRP header to data so
that its peer RRP will know what to do when the data is received by
it. This combined message is sent to the local host-to-host protocol.

I HHP attaches HHP-specific header, and

I the entire message is sent to host 2

Each layer attaches a header (encapsulates the message) as the message
goes down.

At host 2, each layer removes its header, performs header specific
processing and passes the message up.

The ISO seven layer open systems interconnection model

L1 Physical Layer: network hardware; mechanical and electrical
connections.

L2 Data Link Layer: managed the transmission of data across the
physical network. Framing, data transparency and error control.

L3 Network Layer: define how addresses are assigned and how data is
forwarded from one network to another: routing

L4 Transport Layer: Provides reliable, transparent transfer of data
between end points. End to end Error recovery and flow control

L5 Session Layer: Provides the control structure for communication
between applications. Establishes, manages and terminates dialogues
between application entities. Specifies security details.

L6 Presentation Layer: Provides independence to the application
process from differences in data representation.

L7 Application Layer: Each protocol specifies how a particular
application uses the network and how an application program on one
computer makes a request and how the application on another
machine responds.

ISO/OSI and TCP/IP

The seven-layer model had this many layers to provide for compatibility
between network teachnologies.

In practice TCP is the standard network technology and protocol suit of
the internet. It manages with four layers which correspond to the
seven-layer model as follows -

OSI TCP/IP

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

TCP, UDP, ...

IP

Network layer of
the internet

appliction

transport

network

link/physical

TCP/IP

I TCP/IP (Transmission Control Protocol / Internet Protocol) is the
internets communications standard

I It is a complete suite of protocols and includes network, transport
and application layers.

I It is used in many Unix systems, began in the Unix world; Unix is
used widely throughout the Internet.

TCP/IP applications (application-layer protocols) include

FTP file transfer protocol: nowadays wrapped in a security layer; eg
Filezilla

Telnet for remote log-in to a server. Now in a security later; eg SSH

DHS Domain Name Service.

SNMP Simple Network Management Protocol.

SNTP Simple Mail Transfer Protocol.

HTTP Hypertext transfer protocol - used by web browsers.

TCP (Transport layer)
I Transmission Control Protocol.

I Reliable: TCP service takes responsibility for correct delivery of the
data to peer; arranges for re-send if a data packet is lost or corrupt;

I connection-oriented (see below);

I fragments an incoming byte stream into messages for IP layer;

I reassembles received messages (passed up from IP layer) in correct
order, to create an output stream;

I manages flow control.

Connection-oriented

I Communication starts by establising a connection or virtual circuit
to peer;

I Data sent either way between peers all follows the same route: goes
via the connection;

I Connection is closed (virtual circuit destroyed) at end of
‘conversation’.

I This software construct is how TCP manages reliable tranport of
data in correct order and without data duplication or loss.

UDP (Transport layer)

I User Datagram Protocol.

I A ‘best effort’ service: data errors are detected but no responsibility
re-sending. The application has to handle lost or corrupt data.

I connectionless; Data transimissions - UDP datagrams are separate
from one another; each is individually addressed to recipient.

I no sequencing or flow-control.

TCP or UDP?

I UDP is light-weight compared with TCP; it has much less work to
do compared with TCP.

I Preferred in applications which require many short messages to be
sent at high speed: VOIP (telephony), audio, video streaming, ...

I TCP preferred where data exchanges are more ‘heavy-weight’:
HTTP, WWW

Transport layer data

20

TCP & UDP Segments

 TCP segment:

UDP segment:

32 bits

Source port Destination port

Sequence number

Acknowledgment Number

Header length & Flags Window size

Checksum Urgent pointer

Options (0 or more)

Data (optional with padding)

32 bits

Source port Destination port

UDP length UDP checksum

Data (optional with padding)

Transport layer data

Port numbers define the ends of logical connections.

I a message from a process on a host will go to a process on the
destination host using the appropriate port number.

IP layer
IP

I Internet Protocol:

I an ‘unreliable’ connectionless best effort IP packet delivery service.

I A question for you to think about: the IP service interface supports
both reliable TCP and emphbest-effort UDP. How does an
‘unreliable’ or best-effort-only service sipport a reliable service?

I Addressing

I Routing

ARP / RARP

I (Reverse) Address Resolution Protocol

I Maps IP addresses onto data link layer addresses such as Ethernet
card addresses: eg 193.63.32.233 to (MAC address)
008002B39DD10

I Its functions are defined as part of TCP/IP but its implementation is
dependent on the network type.

I TCP/IP does not define what happens below the IP layer.

Transport layer data

23

IP Datagram and TCP/IP Packet Format

 IP datagram format:

 TCP/IP packet structure:

32 bits

Total length

Identification

Options (0 or more)

Header checksum

Source IP Address

Destination IP address

Data (optional with padding)

Type of service Version HLen

Protocol Time to live

Fragment offset & flags

Application Data TCP/UDP

Header

IP Header LAN Header LAN Trailer

32-bit IP Addresses
32 bit addresses specify sources and target hosts.

I normally represented in dotted decimal format, each block describing
8 bits: thus 193.63.32.233 is the sames as 0xC13F20E9 or in binary,
11000001 00111111 00100000 11101001

I Each IP address has two components: the higher bits identify a local
network; the lower bits an individual host or interface to a router,
within a network.

I Hosts on the same network must have IP addresses with the same
network part, but different host parts.

I Hosts with different network address parts might be connected by a
router (eg, with two interfaces with network parts agreeing with the
two hosts).

I Originally the network part was 8, 16, or 24 bits (class A, B or C);
now using CIDR (classless interdomain routing) and VLSM
(variable-length subnet masking) can be any size.

I eg 223.1.252.3 within the subnet 223.1.252.0/22 would need
subnet mask 255.255.252.0, in binary, 11111111 11111111
11111100 00000000: 22 bits’ network part.

Domain names
To avoid referring to individual numerical IP addresses the concepts of
domain names and host names developed.

I Domain and host names are mapped to IP addresses.

I cougar.unn.ac.uk −→ 193.63.32.233;

I no logical relationship between the parts of an IP address and its
domain name.

I The mapping is done using Domain Name Resolution, normally with
the help of a Domain Name Server.

There are not enough 32-bit addresses!

I More than 232 (4 billion) addresses are needed.

I For many years the internet has ’coped’ by allowing addresses to be
duplicated, with routers doing IP address ‘translation’ to prevent
address clashes outside of LANs.

I this makes DNS especially handy!

I IP v 6 specifies 64-bit addresses - clean resoltution of the problem
but IP v 6 is very slow to be adopted by users.

Programming TCP connection

The focus is on applications using transport layer services, especially
TCP, UDP; useful for development of distributed applications. The basic
software entity is a socket.

I role similar to a file-handle;

I First, the socket is connected to a remote host (compare with
opening a file); then data is input/output through the socket; when
complete, the socket is closed the connection is broken.

I Implemented in Java using package java.net, espectially class
java.net.Socket.

I C provides the socket class and a library of socket functions
prototyped in <sys/socket.h>.

Programming TCP connections
#include <sys/socket.h>

I int socket(...); creates a new socket

I int gethostname(char *name, int namelen); translates a host
name to an ip address

I int bind(int s, struct sockaddr *name, int namelen);
binds a socket to a specific address (and port)

I int connect(int s, struct sockaddr *addr, int

*addrlen); used by client to request a socket connection to a
remote address (and port)

I void listen (socket id s, int backlog); causes server to
start listening for requests for a connection

I int accept(int s, struct sockaddr *addr, int *addrlen);
used by server to accept a connection request from a client

I int read(int d, char *buf, int nbytes);

I int write(int d, char *buf, int nb); d = socket id; reads
from/writes to a socket

I int close(int d);

TCP server logic
In general, the behaviour you have to program is dependent on the state
of the system. There you tend to write such constructs as

Fix the port number

Create a socket for the server

Start listening on the socket for requests to connect

Repeat

Wait for a request for a connection.

Accept function returns id of a new socket which will manage the

connection; also gets the name of the client host.

Spin off a new thread to serve the client;

Serving the client

I A subroutine running in a new thread

I Uses socket returned by Accept function

I Uses socket I/O functions to send data to / receive data from client
according to protocol

I When finished, closes the socket.

TCP client logic

In general, the behaviour you have to program is dependent on the state
of the system. There you tend to write such constructs as

Specify server name/addr, port num to which we wish to connect;

Create a socket;

Bind this socket to host name and port number;

Request a connection to the server host / port;

if (return value indicates connection successful)

use socket I/O functions to send data to/receive data;

Close the socket when finished.

I The port number is same at both ends: identifies the virtual circuit
between the client and server.

Programming UDP
Again use a socket but no connection is established. Instead, a version of
the send function is used which incorporates a destination address
parameter:

int sendto(int sockID, char * msg,

unsigned int msgLen, int flags,

struct sockaddr * destAddress,

unsigned int addressLen)

...and a version of the receive function is used which incorporates a
source address parameter:

int recvfrom(int sockID, char * msg,

unsigned int msgLen, int flags,

struct sockaddr * sourceAddress,

unsigned int * addressLen)

The return value in each case is the number of bytes sent/received. Note
is the use of pointers to provide in/out parameters: note the int * (rather
than int) for the receive function’s address length parameter.

Further reading

RFC1122 Requirements for Internet Hosts Communication Layers

I https://en.wikipedia.org/wiki/Internet protocol suite

I https://www.w3.org/People/Frystyk/thesis/TcpIp.html

I https://en.wikibooks.org/wiki/A-level Computing/AQA/

Computer Components, The Stored Program Concept and the Internet/

Structure of the Internet

Requests for comment (RFCs): the following are easily found by internet
search:

I RFC1123 Requirements for Internet Hosts Application and Support

I RFC768 User Datagram Protocol

I RFC793 TRANSMISSION CONTROL PROTOCOL

