
ARM Cortex-M4 Architecture and Instruction Set

M J Brockway

February 9, 2018

Block diagram

This diagram is from the Cortex M4 Generic User Guide, published by
ARM. Further reading: Chapter 1

http://hesabu.net/kf5011/docs/DUI0553A_cortex_m4_dgug.pdf

Programmer’s model

Ref: Generic User Guide section 2.1. Click the link above, or find it on
the module home page.

Processor modes

main stack - running application software. Limited access to some
instructions, system timer. System is in this mode immediately after
reset.

handler mode - handling as exception. Returns to thread mode after all
exceptions handled.

Stacks

I full descending: Stack pointer is decremented when an item is
pushed on; the stack grows ‘downwards’

I Two stacks: main and process; a special register controls which.

4

Programmer’s model

Registers ...

R0-R12 32-bit general-purpose registers for data operations. Avoid using
higher regsiters for applicaton programming!

R13 the stack pointer: main or process stack depending on setting in
CONTROL register.

R14 is the link register(LR): stores the return information for subroutines,
function calls, and exceptions.

R15 is the program counter: stores the address of the next instruction to
be fetched.

PSR The program status register contains information about status of
last operationn. Bits 27-31 are the condition codes; the ones we
shall be most concerned with are

N : the last operation produced an arithmetically negative result
Z : the last operation produced a zero result
C : the last operation produced a carry (or borrow)
V : the last operation produced an arithmetic overflow

Programmer’s model

Registers (ctd)

I CONTROL manages privilege level of the current instruction, and
which of the two stacks to use.

Exceptions and interrupts

NVIC The processor and the nested vectored interrupt controller manage
prioritized handling.

Data types

I 32-bit words, 16-bit halfwords, 8-bit bytes.

I Can be big- or little-endian;

I instruction memory and private peripheral but (PPB) accesses are
always little-endian.

Memory model

I Ref: Generic User Guide sec
2.2;

I With 32-bit addressing, the
memory space is 4 Gb.

Memory model

I code 00000000-1FFFFFFF is where executible code goes. On-chip
FLASH. Data can go here, but not recommended.

I SRAM 20000000-3FFFFFFF is primarily for application data, but
code can go here.

I peripherals 40000000-5FFFFFFF - on-chip peripherals

I external RAM 60000000-9FFFFFFF - eg DDR, FLASH, LCD

I external device A0000000-DFFFFFFF - external peripherals

I private peripheral bus E0000000-E00FFFFF

I vendor-specific E0100000-FFFFFFFF

Cortex-M4 Image of a Program

From low to high memory, ...

1. Interrupt vector table - addresses of interrupt and exception handlers

2. C startup routine

3. Application code and data

4. C library code

On reset, the CPU

1. Reads initial ‘stack pointer’ address

2. Reads interrupt vector for ‘reset’

3. The reset handler branches to start of application program

4. The program executes ...

Introducing Cortex-M4 Machine Instructions

Reading: GUG chapter 3

I The size of most instructions is 32 bits (4 bytes) or 16 bits (2
bytes), comprising a THUMB-2 operation code and sometimes and
additional operand.

I The program as loaded into RAM is thus and array of 32-bit words.
The address of the nth instruction (counting from 0) is therefore the
base address of the loaded program + 32n.

I Shall use ARM assembly language as a human-readable version of
these instructions.

I The following is a simple program: simpler than ’Hello world’, as it
does not do any I/O. It simply uses registers R0, R1 to compute
10 + 9 + 8 + ... + 1, leaving the result in register R1.

Cortex-M4 Machine Instructions - simple example

PRESERVE8 ; Indicate the code here preserve

; 8 byte stack alignment

THUMB ; Indicate THUMB code is used

AREA |.text|, CODE, READONLY ; Start of CODE area

EXPORT __main

ENTRY

__main FUNCTION

; initialize registers

MOV r0, #10 ; Starting loop counter value

MOV r1, #0 ; starting result

; Calculating 10+9+8+...+1 ...

loop

ADD r1, r0 ; R1 = R1 + R0

SUBS r0, #1 ; Decrement R0, update flag (’S’ suffix)

BNE loop ; If result not zero jump to loop

; Result is now in R1

deadloop

B deadloop ; Infinite loop

ENDFUNC

END ; End of file

Simple example: pseudocode

main function:

Put value 10 in register 0

Put value 0 in register 1

Repeat:

Add contents of R0 to R1, leaving result in R1;

Subtract 1 from contents of R0, updating

condition codes according to the result;

Check condition codes:

if ’Z’ not set, repeat, else drop out of loop

Forever run on the spot (branch to self)

Simple example with machine code and relative addresses

1 00000000 PRESERVE8

2 00000000 ; 8 byte stack alignment

3 00000000 THUMB

4 00000000 AREA

5 00000000 EXPORT __main

6 00000000 ENTRY

7 00000000 __main FUNCTION

8 00000000 ; initialize registers

9 00000000 F04F 000A MOV r0, #10

10 00000004 F04F 0100 MOV r1, #0

11 00000008 ; Calculating 10+9+8+...+1

12 00000008 loop

13 00000008 4401 ADD r1, r0

14 0000000A 3801 SUBS r0, #1

15 0000000C D1FC BNE loop

16 0000000E ; Result is now in R1

17 0000000E deadloop

18 0000000E E7FE B deadloop

19 00000010 ENDFUNC

20 00000010 END

MOV, MVN

Syntax

I MOV{S}{cond} Rd, operand2

I MOV{cond} Rd, #imm16

I MVN{S}{cond} Rd, operand2

I The MOV instructons copy the value of the second operand to Rd;
MVN copies the complement of this value to Rd.

where:

I S is an optional suffix. If included, the condition code flags are
updated on the result of the operation.

I cond is an optional condition code (see below).

I Rd is the destination - always a register.

I operand2 is a flexible second operand: one of
I a constant: #const where 32-bit const is either a left-shifted byte or

a constant of one of the forms 00XY00XY, XY00XY00, XYXYXYXY.
I a register with optional shift.

I imm16 is any value in the range 0-65535.

MOV, MVN - Examples
I MOV R3, #0x1F0000 - R3 set to 0x1F0000
I MVN R3, #0x1F0000 - R3 set to 0xFFE0FFFFF
I MOV R3, R0 - value in R0 copied to R3
I MOVS R3, R0 - value in R0 copied to R3 and condition flags set

according to result: Eg Z is set if result is 0; N is set if result is
negative

I MVNS R3, R0 - complement of value in R0 copied to R3 and
condition flags set according to result

I MVNSEQ R3, R0 - if Z is set complement of value in R0 copied to
R3 and condition flags set according to result

Some condition codes

EQ equal: Z==1

NE not equal: Z==0

HS higher or same, unsigned: C==1

HI higher, unsigned: C==1 and Z==0

GE greater than or equal, signed: N==V

GT greater than, signed: N==V and Z==0

Exercise: Find definitions of LO, LS, LE, LT.

Arithmetic

Syntax

I op{S}{cond} {Rd,} Rn, operand2

where:

I op is one of

ADD - add: Rd ← Rn + operand2
ADC - add with carry: Rd ← Rn + operand2 + C
SUB - subtract: Rd ← Rn - operand2
SBC - subtract: Rd ← Rn - operand2 - !C
RSB - reverse subtract: Rd ← operand2 - Rn

I Optional S suffix and cond condition are as we defined above.

I Rd, Rn are registers: Rd is the destination. Its specification is
optional: if absent, Rd=Rn.

I operand2 is a flexible second operand, a byte-sized immediate value
or a register with optional shift (see GUG ch 3).

I ADD, SUB also allow operand2 to be any value in the range 0-4095
(12 bits).

I N,Z,C,V flags updated (with S option) according to result.

Arithmetic Examples

I ADD R0, R1, R1, LSL #2: R0 ← R1 + (R1 << 2)

I ADDEQ R0, R1, #1 - If Z flag is set, R0 ← R1 + 1

I ADDS R0, #1 - R0 ← R0 + 1

I ADC R3, R4, R5 - R3 ← R4 + R5 + C

I SUBS R0, R0, #1 - R0 ← R0 - 1; update condition flags

I SBCNES R0, R1, R2 - If Z is clear, R0 ← R0 - R2 - !C; update
condition flags

I RSBS R0, R1 - R0 ← R1 - R0; update flags

Logic

Syntax

I op{S}{cond} {Rd,} Rn, operand2

where:

I op is one of

AND - bitwise AND: Rd ← Rn & operand2
ORR - bitwise OR: Rd ← Rn — operand2
EOR - bitwise exclusive OR: Rd ← Rn ôperand2
BIC - bitwise AND NOT: Rd ← Rn & !(operand2); clears bits in Rb

marked by operand2
ORN - bitwise OR NOT: Rd ← Rn — !(operand2)

I Optional S suffix and cond condition are as we defined above.

I Rd, Rn are registers: Rd is the destination. Its specification is
optional: if absent, Rd is Rn.

I operand2 is a flexible second operand, a byte-sized immediate value
or a register with optional shift (see GUG ch 3).

I With S option, N,Z updated according to result (possibly also C
during evaluation of operand2)

Logic Examples

I ORREQ R0, R1, #0x1F - If Z is set, R0 ← R1 — 0x1F

I EORS R0, R1 - R0 ← R0 R̂1; set flags

I BIC R3, R4 - R3 ← R3 & !R4: bits set in R4 are cleared in R3

Shifts
Syntax

I op{S}{cond} Rd, Rn, Rs
I op{S}{cond} Rd, Rn, #n
I RRX{S}{cond} Rd, Rn

where:
I op is one of
ASR - arithmetic shift right
LSL - logical shift left
LSR - logical shist right
ROR - rotate right

I Optional S suffix and cond condition are as we defined above.
I Rd is the destination register; Rn is register holding the value to be

shifted
I Register Rs holds value of shift length - only the lowest order byte

applies
I #n is a shift length:

ASR, LSR 1 ≤ n ≤ 32;
LSL, ROR 0 ≤ n ≤ 31;

I RXX sets Rd to bits in Rn rotated right 1 bit.
I With S option, N,Z updated according to result; if shift length > 0,

C updated to last bit shifted out.

Comparisons

These always update the condition flags, without needing an S suffix.
There is no destination register: the only purpose is to update the flags.
Syntax:

I CMP{cond} Rn, operand2

I CMN{cond} Rn, operand2

I TST{cond} Rn, operand2

I TEQ{cond} Rn, operand2

where:

I Rn register holds the first operand;

I operand2 is a flexible second operand, as seen above.

I CMP subtracts the operands and CMN adds the operands, setting the
condition flags but discarding the result. Cf SUBS, ADDS.

I CMP R0, R1 sets Z and C if R0==R1, sets N if R1 > R0, sets C if
R0 > R1

I TST bitwise ANDs the operands and TEQ bitwise EORs the operands,
setting the condition flags but discarding the result. Cf ANDS, EORS.

Branching

I To do anything other than run a fixed sequence of instructions, the
CPU needs to be able decide on the result of some test what
instruction to execute next.

I In normal operaton, an instruction is fetched from the address
pointed at by the Program Counter (PC = R15), and the PC
immediately incremented by the size of that instruction: 2 or 4
bytes. Then the “next” instruction is the next in the RAM.

I A branch instruction overrides this by setting the PC to some other
value - some other valid instruction address, we hope.

I A conditonal branch: only happens if some condition is met.

I The “next” instruction to be fetched is the one whose address was
loaded into the PC by the branch instruction.

Branching

Syntax

I B{cond} label

I BL{cond} label

I BX{cond} Rm

I BLX{cond} Rm

where:

I cond is an optional condition code, EQ, NE, LT, LE, GE, GT,

... etc

I Rm is a register containing the address to branch to.

I A label is declared in the assembly language code as an unindented
symbol: eg main, loop, deadloop on slide 11

Memory Access Instructions with immediate offset

Syntax

1. op{type}{cond} Rt, [Rn] - no offset or write-back

2. op{type}{cond} Rt, [Rn, #offset] - immediate offset, no write-back

3. op{type}{cond} Rt, [Rn, #offset]! - pre-indexed

4. op{type}{cond} Rt, [Rn], #offset - post-indexed

where:

I op is one of

LDR - load register Rt from [...]
STR - store register Rt to [...]

I type is one of

B - unsigned byte (0-extended to 32 bits)
SB - signed byte (on load, sign-extended to 32 bits)
H - unsigned halfword (0-extended to 32 bits)

SB - signed halfword (on load, sign-extended to 32 bits)
I omitted if whole word is to be loaded or stored

I Optional cond condition is EQ, NE, ... as we defined above.

I Rt is register to load to or store from.

Examples

I LDR R8, [R10] - load R8 from memory address R10

I STR R2, [R5, #4] - store R2 to memory address R5+4; value in
R5 is unchanged

I LDR R2, [R5, #4]! - Add 4 onto contents of R5, then load R2
from memory address R5

I STR R2, [R5], #-4 - load R2 from memory address R5 then
decrement contents of R5 by 4

Data Definitions

These instructions assume we have a register containing an address
pointing at an item of data, or perhaps an array of data. One way this
comes about is via the assembler directives which define and reserve
memory for data.

{label} DCD expr{, expr} ...
{label} DCDU expr{, expr} ...

I defines a 32-bit word or a sequence of words with optional label
giving address.

I expr is a numeric expression

I The version without U adds padding so that the data is aligned on a
word boundary, an address that is a multiple of 4. Usually the
unaligned version is the simpler one to use.

I Example
I numArray DCDU 1000000, 999999, 999998, 999997

I LDR R0, =numArray ;loads address of data into R0

I LDR R1, [R0, #4] ;loads 999999 into R1 Why #4?

The Cortex-M4 Stack

SP

The subroutine stack is full, descending

I It “grows” downwards from higher to lower memory addresses

I The stack pointer SP, register R13, points at the last word on the
stack.

I SP - 4 is address of next available space on the stack.

Alternatives

I ascending - “grows” upwards

I empty - SP points at next available space rather than last occupied
space.

Full Descending Stack operations

PUSH Decrement SP, then store data to where SP points

POP Retrieve data from where SP points, then increment SP.

(Questions: how would these be different for an ascending full stack? an
ascending empty stack?)

Full Descending Stack operations

Cortex-M4 Syntax

I PUSH{cond} regs-list

I POP{cond} regs-list

where:

I cond is an optional condition code, as before: the operation occurs
only if the condition is true

I regs-list is a comma-separated list in braces {} of regsters or ranges
or registers (eg R0-R3, etc)

I PUSH stores the register contents with higher-numbered registers at
higher addresses, starting at SP-4. At the end, SP points at the
lowest stored value.

I POP loads the registers from the stack, assuming higher-numbered
registers are at higher addresses, and post-increments SP by 4 times
the number of registers popped.

Full Descending Stack operations

I Do not include the SP in the register list;

I Special restrictions apply to including the PC in the register list.

I You normally do need to push th LR if you want to be able to nest
subroutine calls.

I These instructions do not change the condition code flags.

Examples

I PUSH {R0,R4-R7}
I PUSH {R0-R2,LR}
I POP {R5-R8}

Question: describe the effect of following the last two examples one after
the other.

Subroutines - basic idea
The black code contains a call to the function defined by the brown code:

....

BL myFunc

....

myFunc FUNCTION

....

....; do some complicated stuff

BX LR

ENDFUNC

I The brown code defines a function labelled myFunc

I A branch to myFunc starts executing it.

I The last thing myFunc does is BX LR: branch to the address stored
in the link register...

I ... so the calling code should brach with BL myFunc - branch to
myFunc storing the return address in the link register. This is the
PC value of the instruction after BL myFunc.

Subroutines - example

A simple function to compute largest (unsigned) integer ≤
√
x :

typedef unsigned int uint32_t;

uint32_t usqt(uint32_t x) {

uint32_t n = 0x8000,

m = 0;

while (n != 0) {

m += n;

if (m*m > x) {

m -= n;

}

n >>= 1;

}

return m;

}

Subroutines - example

Here is an assembly language version:

1: PRESERVE8 ; Indicate the code here preserve

2: ; 8 byte stack alignment

3: THUMB ; Indicate THUMB code is used

4: AREA |.text|, CODE, READONLY

5: EXPORT __main

6: ENTRY

7: __main FUNCTION

8: ; initialize registers

9: MOV r0, #1000 ; Starting loop counter value

10: BL usqt

11: deadloop

12: B deadloop ; Infinite loop

13: ENDFUNC

14:

Subroutines - example

15: usqt FUNCTION

16: ; compute highest 32-bit uint < value in r0

17: ; return value in r0

18: PUSH {r1-r3}

19: MOV r1, #0x8000 ; n = 0x8000

20: MOV r2, #0 ; m = 0

21: usqLoop

22: ADD r2, r2, r1 ; m += n

23: MUL r3, r2, r2 ; r3 = m*m

24: CMP r3, r0

25: BLS jump ; if unsigned lower or same as x

26: SUB r2, r2, r1 ; skip this step

27: jump

28: LSRS r1, r1, #1

29: BNE usqLoop

30: MOV r0, r2 ; copy result into r2

31: POP {r1-r3}

32: BX LR

33: ENDFUNC

34: END ; End of file

Subroutines - example

I Line 10 in the main function calls the subroutine function usqt with
BL usqt

I The function is actually defined on lines 15-33. You will need to
satisfy yourself these are equivalent to the C code above.

I Line 32 ends the function call with a branch to the address saved in
LR by the line 10.

I The function gets the parameter x in register r0, uses registers r1,
r2, r3 as “local variables” and returns the result in r0.

I IT IS GOOD PRACTICE therefore to PUSH these registers onto the
stack at the beginning (line 18) and restore them with a POP at the
end of the call, line 31.

I It is also common prctice to push LR onto the stack (and pop it off
at the end) as well: ESSENTIAL if this function itself calls another
function.

I In fact, push and pop all registers the function alters in any way.

I In this case, register r0 is excluded because it is used to pass the
return value back to the calling code.

Calling a subroutines from C - main.c

1: int fact(int x);

2: int x, y;

3:

4: int main() {

5: x = 4;

6: y = fact(x);

7: return 0;

8: }

Calling a subroutines from C - main.c
1: PRESERVE8 ; Indicate the code here preserve

2: ; 8 byte stack alignment

3: THUMB ; Indicate THUMB code is used

4: AREA |.text|, CODE, READONLY ; Start of CODE area

5: EXPORT fact

6: ENTRY

7: fact FUNCTION

8: ; expects arg in R0; returns val in R0

9: PUSH {R1,R2, LR} ; save working registers and LR

10: MOVS R1, R0 ; if nonzero, recursive call ...

11: BNE recvCall ; else ...

12: MOV R0, #1

13: B return

14: recvCall

15: SUB R0, #1

16: BL fact

17: MUL R0, R0, R1

18: return

19: POP {R1,R2, LR} ; restore saved registers

20: BX LR

21: ENDFUNC

22: END ; End of file

