
State Machines

Michael Brockway

February 5, 2018

A control system example

Suppose you have to write software for an industrial system. A simple
example is one comprising a conveyor belt, a robot arm that picks items
up from an input area and puts then on the the belt, and another robot
arm that removes them from the far end of the belt.

The three components have their own control software but a supervisory
unit needs to coordinate their actions. In particular,

I When starting the system up, it needs to know when each of the
other components is ready to act;

I When shutting the system down it needs to know there are no items
part-way through the system;

I It needs to be able to tell the input robot there is an item to pick up;

I It needs to know when the output robot has removed an item from
the belt;

I It needs to be able to pause the system and resume operation;

I It needs to halt the system in case of emergency.

A control system example

To design software for this, think of the system being in one of a set of
states:

initstart

running

paused

stopping

stopped

emergency

!ready

ready

shutdown()
pause

+item

-item

-item

itemCt==0

resume

A control system example

The states are

I init running paused stopping stopped emergency
I init is the initial state.

Transitions between states are denoted by labelled arrows

I The labels may denote events or actions or conditions

I !ready means the components have not all notified that they are
ready; once they have (ready event) the system goes to running
state.

I +item means an item has entered the system; -item means an item
has been delivered by the system;

I itemCt==0 means all items have been delivered; there are none left
in the system, so the system can transfer to the stopped state.
Counter itemCt is programmed to keep track of this.

A control system example

In general, the behaviour you have to program is dependent on the state
of the system. There you tend to write such constructs as

if (state == init} {

if (allComponentsReady()) { state = idle; }

}

else if (state == running) {

if (pause()) { state = paused; }

else if (itemArrived()) { itemCt++; }

else if (itemDelivered()) { itemCt--; }

else if (shutdown()) { state = stopping; }

}

else if (state == stopping) {

if (itemCt==0) { state = stopped; }

else if (itemDelivered()) { itemCt--; }

}

else ...

A control system example

Another coding style is to use the switch construct ...

switch (state) {

case init:

if (allComponentsReady()) { state = idle; }

break;

case running:

if (pause()) { state = paused; }

else if (itemArrived()) { itemCt++; }

else if (itemDelivered()) { itemCt--; }

else if (shutdown()) { state = stopping; }

break;

case stopping:

if (itemCt==0) { state = stopped; }

else if (itemDelivered()) { itemCt--; }

break;

.... (more cases)

}

Note that labels on transitions to state emergency have been omitted
from the diagram to save clutter. There would be cases correpsonding to
these too.

The ’philosophy’ of state machines such as this is that

I the system in some particular state will always try to move via a
transition so another state.

I If it cannot that sytem is deadlocked.

The transition labels indicate events that trigger change of state and/or
an update of state variables.

I This might be an external event:

I an input from a sensor or the network;
I an interrupt

I ... or just some predicate on the state variable (eg itemCt == 0)
becoming true.

Vending machine example

Another informal example is a vending machine which

I allows the customer to choose quantities of each of a number of
wares,

I will accept payment by cash or card, and

I dispense the goods at the conclusion of payment.

If you were developing the software for this machine you might find a
state machine like the following useful.

Vending machine example

start sessionstart choosing

checkout

card paymentcash payment

delivery

error

start buying

done

add

deletecancel

paid

cancel

session complete

Vending machine example

Exercises for you -

I Describe the significance of each of the states.

I Describe the significance of each of the transition labels.

I Suggest labels for the transitions between ‘checkout’ and ‘cash
payment’, ‘card payment’ and describe their significance.

I Write pseudocode for (some of) the diagram.

I Can you extend the state machine to include accepting coins/notes?
giving change?

More formal state machines

This way of depicting ’computational logic’ has been around for a while.

A related idea, flow charts [wiki] have been around since the 1950s or
longer.

I The basic flow-chart is very simple: a start-point, end- or
exit-points, rectangles denoting activities and diamond-shaped boxes
denoting decisions.

I Program logic was depicted on flow charts in the early years but this
became unwieldy very quickly.

A more sophisticated formal construct, the finite state automaton (or
finite state machine, FSA or FSM if you like TLAs1) has been very useful
in theoretical computing science, and continues to be.

1three-letter acronyms

https://en.wikipedia.org/wiki/Flowchart

Finite-state automata

A finite-state automaton is based on a finite set A of symbols or letters,
called its alphabet. It is a construct (Q,R, q0,F) where

I Q is a (finite, non-empty) set of locations or states;

I q0 is a particular (q0 ∈ Q) initial state;

I R is a set of edges between pairs of states, labelled with letters from
A. A typical edge is something like q1

a−→ q2 where a ∈ A and
q1, q2 ∈ Q.

I F ⊆ Q. F is a particular subset of states, final states.

We have seen two (almost) examples already: the control system model
and the vending machine model. Here, Q is the set of states, q0 the
intial state, A the set of events or actions that label the arrows, and R
the labelled arrows themselves.

For more (similar) examples see the [wiki]

https://en.wikipedia.org/wiki/Finite-state_machine

Finite-state automata

A run of an automaton is a sequence of locations/states starting with the
initial state q0 and with each state in the sequence connected to the
previous state by an edge labelled by an element of A. Thus A, for
’alphabet’ could also stand for ’actions’. An automaton is

I deterministic if from any state, there is at most one transition
available to a ’next state, and

I non-deterministic otherise: from some states there is a choicde of
’next’ actions.

A early use of finite-state automata in theoretical computing science was
to define a language over an alphabet, A.

I Take a string of symbols from A, a1a2a3...an and present this as
’input’ to an automaton (Q,R, q0,F).

I Let the automaton run, ’consuming’ a letter each time it takes a
transition:

I ... so the run will look something like
q0

a1−→ q1
a2−→ q2

a3−→ q3
a4−→ ...

an−→ qn.

Finite-state automata

If a run is possible in which qn ∈ F , that is, it ends up in a state in the
special subset F , we say the automaton accepts the string.

An early theoretical result was if A is the ’ordinary’ alphabet, then the
strings of letters from A accepted by FSMs are exactly the regular
expressions.

Interestingly, this is the same whether we restrict to deterministic
automata, or allow non-deterministic ones too. We can also allow runs to
include transitions with an ’empty’ label, but we still get just the reqular
expressions.

Timed automata

In one of our final-year modules, embedded system specification and
design, we employ this further development of the finitate-state
automaton, in which

I the automaton has a set of ’stop-clocks’ which ’tick’ at a regular
rate during a run.

I A state/location can be specified to accessible only if the time on a
clock is ≤ some value, and

I the transitions/edges are decorated with

I guards which allow the transition only if some test on the
clocks is satisfied, and also with

I actions with reset clocks and perform other updates to system
variables when the transtion is taken during a run.

This turns out to be a powerful technique for modelling and testing the
behaviour of real-time

Probabilistic automata

u0start

u1

u2

u3

u4

u5

u6

t1

t2

t3

t4

t5

t6

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

Probabilistic automata

Another interesting devlopement of the basic finite automaton is a state
machine in which the transitions between states/locations are decorated
with probabilities.

I Each state has a set of forward transitions with probablities adding
up to 1.

I In a run, the transition with probability p is selected, with probability
p.

In the example above (due to Knuth and Yao), each state has two
transitions outward and a run takes one transition or the other with a
50-50 chance - a toss of a coin.

I The probability of reaching state t2 is
(1
2)3+(1

2)5+(1
2)7+(1

2)9+... = (1
2)3(1+ 1

4 + 1
16 + 1

64 +...) = 1
8×

4
3 = 1

6

I In fact the same calculation applies to all the tn states.

A roll of a 6-sided die is simulated with coin tosses!

State diagrams and the state design pattern

Not surprisingly, UML has a version of state machines: see, for instance,
agilemodeling.com

I These state charts can be hierarchical, as in figure two on the Agile
Modelling page: a state can be made up of a ’miniature’ state
machine.

Lastly, again another object-oriented view of state machines is given by
the state design pattern: see, for example the State pattern wiki

I This design pattern really formalises the system for coding a
state-driven system like the examples we began with.

I Formally, there is a choice of functionalities dependent on state. In
C this used be done with an array of pointers to functions indexed
by the state. In a modern OO language like java, the different
(polymorphic) functionalities would be in classes implementing a
common interface and the state would determine a particular
implementation.

http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm
https://en.wikipedia.org/wiki/State_pattern

