
Control systems and Computer Networks
Discrete Time and Interrupts

Dr Alun Moon

Lecture 02.2

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 1 / 15

Part I

Inputs

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 2 / 15

Time

I In the real world we have to deal with time.
I The CPU is driven by a clock signal

I From the CPU point of view we can think of time as being in discrete
chunks.

I External clock is 50MHz
I Cortex M4 core clock 120MHz
I Clock period ∼ 8 ns

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 3 / 15

Polling

Consider the following code, polling the switch every 100ms
(10 times a second).

while(1) {
if(ispressed(SW1)) action();
wait(0.1);

}

I The GPIO circuit looks at the switch for 10 ns
I We end up looking at the switch every 10 ns out of every 100ms
I or for 0.00001% of the time.

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 4 / 15

We can miss important events...

Polling
Event

I If the event we are watching for is smaller that the time between polls.
I We can fail to spot the event entirely

Polling
Event

I For long events.
I When exactly is the button pressed?

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 5 / 15

Interrupts
Event driven programming

I Recall the fetch-execute cycle.

fetch decode execute
instruction

I Interrupts occur asynchronously
ldr a ldr b add a b

ISR

str

I When an Interrupt occurs (IRQ) the program jumps out of the normal
flow, to the interrupt handler (ISR), then returns to the next
instruction in the normal flow.

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 6 / 15

Digital Inputs
Edge triggered interrupts

I with a digital signal where do we raise an interrupt request?

I The easiest thing to do, is to detect changes in the signal
Rising Edge the signal goes from 0 to 1

Falling Edge the signal goes from 1 to 0

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 7 / 15

Interrupt Service Routines

ISRs cannot take parameters or return values

ISR prototype
void buttonISR(void);

Any data that needs to be passed between the ISR and the program needs
to be done via global variables

ISRs need to be kept short. Remember the code is executing between
other instructions.
Avoid slow operations such as reading and writing to the display or serial
port.

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 8 / 15

Creating an Inturrupt handler

InterruptIn left(SW2);
InterruptIn right(SW3);

left.rise(on);
right.fall(off);
while(1) /* GNDN */ ;

I Only some pins can generate interrupts
I an action can be attached to rising and falling edges
I Remember to check for logic inversions (pressed is a falling edge)
I Actions occur independently from the main-loop

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 9 / 15

Part II

Timers

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 10 / 15

Timeing

I For many applications we want something to happen periodically
I using loops and delays is problematic

while(1) {
int sensor = ispressed(SW1);
printf("button is %s presesed", sensor?"":"not");
wait(1);

}
I Timing depends on execution time of code.

• difficult to predict
• varies from loop to loop

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 11 / 15

Periodic Interrupt Timer

I We can generate interrupts from a hardware timer
I these can be set at a particular period
I an IRQ is generated an each period.
I Accurate precise times

• lower resolution – the system clock ∼ 8 ns
• upper bound – when the counter rolls over 34 s for 32 bits
• for 4 chained timers 2.7 × 1030 s (8 × 1022 a or 6 × 1012 universe)

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 12 / 15

Using a PIT
Soft timers

I Once we have a periodic tick we can do interresting things
I the ISR can count ticks

On tick
0 LED on
2 LED off
5 reset tick to 0

Turns the LED on for 2/5 of the time

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 13 / 15

MBed

The MBed library uses a single soft-timer to handle PIT interrupts
Ticker pit;
pit.attach(flash,0.5);
while(1);

I Attaches the flash function to be called every 0.5 s
I Happens independently to main-loop
I Concurrency! (without the messing about with OS)
I Library supports any number of PIT interrupts

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 14 / 15

Interrupt timing
The fine details

I There is a delay between the IRQ being raised and the ISR starting.
IRQ

‘main’ execution
ISR

Interrupt latency

I Remember not to make ISRs too long
IRQ
Bad

Good

Dr Alun Moon Control systems and Computer Networks Lecture 02.2 15 / 15

	Inputs
	Timers

